Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Anal Chem ; 94(51): 17757-17769, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2160133

ABSTRACT

We report the development of a label-, antibody-, enzyme-, and amplification-free ratiometric fluorescent biosensor for low-cost and rapid (less than 12 min) diagnosis of COVID-19 from isolated RNA samples. The biosensor is designed on the basis of cytosine-modified antisense oligonucleotides specific for either N gene or RdRP gene that can form silver nanoclusters (AgNCs) with both green and red emission on an oligonucleotide via a one-step synthesis process. The presence of the target RNA sequence of SARS-CoV-2 causes a dual-emission ratiometric signal transduction, resulting in a limit of detection of 0.30 to 10.0 nM and appropriate linear ranges with no need for any further amplification, fluorophore, or design with a special DNA fragment. With this strategy, five different ratiometric fluorescent probes are designed, and how the T/C ratio, the length of the stem region, and the number of cytosines in the loop structure and at the 3' end of the cluster-stabilizing template can affect the biosensor sensitivity is investigated. Furthermore, the effect of graphene oxide (GO) on the ratiometric behavior of nanoclusters is demonstrated and the concentration-/time-dependent new competitive mechanism between aggregation-caused quenching (ACQ) and aggregation-induced emission enhancement (AIE) for the developed ssDNA-AgNCs/GO nanohybrids is proposed. Finally, the performance of the designed ratiometric biosensor has been validated using the RNA extract obtained from more than 150 clinical samples, and the results have been confirmed by the FDA-approved reverse transcription-polymerase chain reaction (RT-PCR) diagnostic method. The diagnostic sensitivity and specificity of the best probe is more than >90%, with an area under the receiver operating characteristic (ROC) curve of 0.978.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Fluorescent Dyes/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , SARS-CoV-2/genetics , DNA , RNA , Biosensing Techniques/methods , Spectrometry, Fluorescence/methods
3.
Vaccine ; 38(48): 7612-7628, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-845923

ABSTRACT

SARS-CoV-2 causes a severe respiratory disease called COVID-19. Currently, global health is facing its devastating outbreak. However, there is no vaccine available against this virus up to now. In this study, a novel multi-epitope vaccine against SARS-CoV-2 was designed to provoke both innate and adaptive immune responses. The immunodominant regions of six non-structural proteins (nsp7, nsp8, nsp9, nsp10, nsp12 and nsp14) of SARS-CoV-2 were selected by multiple immunoinformatic tools to provoke T cell immune response. Also, immunodominant fragment of the functional region of SARS-CoV-2 spike (400-510 residues) protein was selected for inducing neutralizing antibodies production. The selected regions' sequences were connected to each other by furin-sensitive linker (RVRR). Moreover, the functional region of ß-defensin as a well-known agonist for the TLR-4/MD complex was added at the N-terminus of the vaccine using (EAAAK)3 linker. Also, a CD4 + T-helper epitope, PADRE, was used at the C-terminal of the vaccine by GPGPG and A(EAAAK)2A linkers to form the final vaccine construct. The physicochemical properties, allergenicity, antigenicity, functionality and population coverage of the final vaccine construct were analyzed. The final vaccine construct was an immunogenic, non-allergen and unfunctional protein which contained multiple CD8 + and CD4 + overlapping epitopes, IFN-γ inducing epitopes, linear and conformational B cell epitopes. It could form stable and significant interactions with TLR-4/MD according to molecular docking and dynamics simulations. Global population coverage of the vaccine for HLA-I and II were estimated 96.2% and 97.1%, respectively. At last, the final vaccine construct was reverse translated to design the DNA vaccine. Although the designed vaccine exhibited high efficacy in silico, further experimental validation is necessary.


Subject(s)
Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Nonstructural Proteins/immunology , Viral Vaccines/biosynthesis , Amino Acid Sequence , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Computational Biology , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immunity, Innate/drug effects , Immunogenicity, Vaccine , Molecular Docking Simulation , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , Protein Structure, Secondary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Attenuated , Vaccines, DNA , Vaccines, Subunit , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL